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ABSTRACT: Frequent hospital visits for hand rehabilitation exercises, such as strengthening 

and opposition exercises, present significant challenges, especially for patients in remote 

areas. This paper addresses this problem by developing a Rehabilitation Internet-of-Things 

(RIOT) system that utilizes MediaPipe with its pre-trained Deep Learning (DL) to deliver 

real-time feedback during hand rehabilitation exercises alongside Web Assembly (WASM) 

for efficient processing. The system's objective is to provide precise, real-time tracking of 

hand movements, enabling patients to perform exercises at home by maintaining an optimal 

distance between the camera and hand placement, ensuring ideal room lighting conditions 

across IoT devices such as mobile phones' front cameras and webcams, while healthcare 

professionals remotely monitor their progress. The methodology involves the integration of 

MediaPipe for detecting hand landmarks and adaptive sensitivity algorithms to ensure reliable 

recognition across different environments, such as varying lighting and hand positions. Future 

work could incorporate additional deep-learning models like CNNs and RNNs to enhance 

gesture classification accuracy. Several limitations, including latency and distance sensitivity, 

are addressed in this system with edge computing alongside adaptive algorithms. The key 

contributions of this research are as follows: First, developing a real-time and cost-effective 

solution for remote stroke rehabilitation. Second, accuracy is improved by integrating 

MediaPipe with deep learning techniques. Lastly, latency issues and accuracy challenges at 

extended distances are alleviated by employing innovative calibration methods and adaptive 

adjustments. Initial trials demonstrate promising results, though further testing is required 

under real-world conditions to validate the system's effectiveness fully. 

ABSTRAK: Perjalanan yang kerap ke hospital untuk latihan pemulihan tangan, seperti latihan 

rawatan fisioterapi telah memberikan cabaran yang besar bagi pesakit yang tinggal di 

pedalaman. Sistem Pemulihan Internet Benda (RIOT) menggunakan MediaPipe bersama 
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Deep Learning (DL) yang telah dilatih untuk memberikan maklum balas masa nyata semasa 

latihan pemulihan tangan, serta Web Assembly (WASM) untuk pemprosesan yang cekap, 

sebagai penyelesaian. Tujuan sistem ini adalah untuk menyediakan penjejakan pergerakan 

tangan yang tepat dalam masa nyata, yang mampu dijalankan latihan di rumah dengan 

pemantauan pegawai perubatan untuk meneliti kemajuan mereka dari jarak jauh. Metodologi 

melibatkan penyatuan MediaPipe untuk mengesan titik penting pada tangan dan algoritma 

kepekaan suaian untuk memastikan pengiktirafan yang boleh dipercayai dalam pelbagai 

persekitaran, seperti pencahayaan dan kedudukan tangan. Lonjakan bagi kajian in adalah 

dapat menggabungkan model DL seperti CNNs dan RNNs untuk meningkatkan ketepatan dan 

penyusunan isyarat. Sistem ini juga dapat mengurangkan masalah masa pendam dan 

perubahab jara dengan melaksanakan edge computing dan penyesuaian algoritma. 

Sumbangan utama kajian ini termasuklah sistem masa nyata yang kos efektif untuk pemulihan 

strok jarak jauh, peningkatan ketepatan melalui gabungan MediaPipe dan model DL, dan 

pengurangan masalah masa pendam dan ketepatan jarak yang lebih jauh melalui tentuukur 

dan suaian algoritma. Percubaan awal telah menunjukkan hasil yang bagus. Walau 

bagaimanapun, ujian lanjut masih perlu dibuat dalam dunia sebenar untuk menjamin 

keberkesanan sistem secara keseluruhan. 

KEYWORDS: Rehabilitation Internet-of-Things (RIOT), MediaPipe, Deep Learning (DL), 

hand gesture recognition, Artificial Intelligence (AI). 

1. INTRODUCTION

Deep Learning (DL), a transformative branch of artificial intelligence (AI), has 

significantly advanced various domains by enabling machines to learn from vast datasets and 

make autonomous decisions. From a healthcare perspective, DL can analyze patient data to 

tailor personalized treatment plans and monitor progress effectively. For example, studies have 

demonstrated that DL algorithms can enhance the accuracy of gesture recognition systems, 

which are necessary for rehabilitation exercises, by processing and interpreting visual data in 

real-time [1]. The ability of DL to handle large datasets makes it particularly suitable for 

applications in medical imaging and patient monitoring using the Internet of Things (IoT), 

where it can uncover insights that traditional methods may overlook [2]. 

For stroke patients who require continuous exercise, IoT and DL combinations such as 

gesture recognition systems have emerged as tools for providing real-time feedback on patient 

movements. This is essential for effective therapy, and the accuracy of these systems is further 

enhanced through a robust calibration process, which adjusts for varying conditions such as 

lighting, hand positioning, and distance from the camera [3]. This shows that the integration of 

IoT and DL techniques has significantly improved the accuracy and reliability of gesture 

recognition systems, allowing for the detection of subtle movements that may indicate progress 

or areas needing improvement [2]. 

In addition, MediaPipe is an innovative framework developed by Google that facilitates 

real-time analysis and feedback and simplifies the implementation of complex machine-

learning tasks, enabling developers to create applications that can detect and interpret human 

gestures with high accuracy and practicality. The combination of MediaPipe and its pre-trained 

DL models into rehabilitation technologies allows the development of user-friendly interfaces, 

thereby enhancing engagement and motivation during therapy sessions at home [4]. The system 

also uses Web Assembly (WASM) to ensure efficient processing, enabling it to run on various 

devices, including low-power edge devices. 
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RIOT utilizes IoT and AI to enable interactions between patients and healthcare 

professionals during remote therapy procedures to showcase advancements in modern 

technologies. This connectivity enables healthcare professionals to monitor patient progress 

with prescribed exercises and make data-driven decisions to enhance treatment outcomes [4]. 

The gathered data can be analyzed to create personalized rehabilitation plans tailored to each 

patient's specific needs, which can then be verified by healthcare providers based on 

rehabilitation scoring, ultimately enhancing overall treatment efficacy [5]. Rehabilitation 

scoring will assist the therapists in tracking the patient’s progress records.  

However, a study by Kelly et al. [6] the system addresses challenges such as latency and 

accuracy by incorporating a robust calibration process and proposing solutions like edge 

computing and adaptive sensitivity algorithms. The current work has focused on calibrating the 

system based on environmental factors, latency, and accuracy. Through the investigation, it has 

been shown that accuracy is influenced by latency and other environmental factors related to 

recognition and tracking. As the field of smart healthcare advances, RIOT is positioned to play 

a role in bridging the gap between patients and healthcare providers, ensuring that rehabilitation 

services are accessible and effective. To align with the efficacy and accuracy in RIOT 

development, the system’s decision-making can be elevated by focusing on tuning the 

Convolutional Neural Networks (CNNs) for enhanced spatial analysis and Recurrent Neural 

Networks (RNNs) for dynamic gesture sequence recognition, which allows the system to adapt 

more effectively to the user’s progress.  

By offering a real-time, cost-effective, and adaptive solution for remote stroke 

rehabilitation, the RIOT system aims to greatly enhance the accessibility and quality of 

rehabilitation services for patients in remote areas. Initial trials demonstrate promising results 

in terms of recognition accuracy and real-time feedback, though further testing is required to 

validate the system fully under real-world conditions. Initial explorations of this work were 

already reported in [7], [8].  

The design and implementation of the solution were delivered in this paper as arranged as 

follows: After this introduction, Section 2 will elaborate on the study of related and previous 

research, while the ML and DL elaboration in Section 3 entails how the system is developed. 

Next, Section 4 further explains the software used and shows the experimental results after 

testing the system. Section 5 breaks down the system's plans, as this paper concludes. 

2. LITERATURE REVIEW 

This section will elaborate on the role of Artificial Intelligence (AI), Machine Learning 

(ML), and Deep Learning (DL) in the RIOT system for hand gesture recognition by exploring 

the integration of those technologies within the system, their significance in improving patient 

rehabilitation results, and recent advancements in gesture recognition. Also, MediaPipe’s role 

as a pre-trained model uses deep learning while leaving the possibility of future CNN/RNN 

integrations. Since MediaPipe handles gesture detection, it is important to be clarified, and 

CNNs/RNNs could be added in future work. 

2.1. Introduction of Machine Learning and Deep Learning: An Overview of AI, ML, 

and DL in RIOT System 

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are integral 

components of the RIOT system for hand gesture recognition, automating the detection 

process, and delivering real-time feedback for stroke rehabilitation. MediaPipe, a framework 

developed by Google, plays a pivotal role in this system, leveraging a pre-trained deep-learning 
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model to detect hand landmarks accurately and efficiently in real time. This pre-trained model 

enables the RIOT system to conduct gesture recognition without requiring additional ML or 

DL frameworks during deployment. 

While MediaPipe serves as the primary tool for hand gesture recognition, the system’s 

future enhancements may include advanced deep learning models such as Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to improve the detection of 

more complex movements. Integrating these DL techniques would further enhance the 

system’s ability to adapt to patient-specific needs during rehabilitation exercises. 

2.1.1. Machine Learning and Deep Learning in Hand Gesture Recognition 

Machine Learning (ML) and Deep Learning (DL) play a crucial role in contemporary 

gesture recognition systems, particularly in the realm of rehabilitation. MediaPipe uses deep 

neural networks to recognize hand gestures in real-time [9]. This framework ensures high 

accuracy in detecting hand landmarks and movements, which is essential for rehabilitation 

exercises.  

Firstly, in Machine Learning (ML), according to Figure 1, feature extraction is a process 

that requires manual intervention from domain experts who identify and design relevant 

features from structured data. This manual feature engineering is essential because the 

performance of ML models, like Support Vector Machines (SVM) and Decision Trees, heavily 

depends on the quality of these features [10]. Research suggests that effective feature 

engineering can greatly improve model accuracy and efficiency, highlighting its significance 

in traditional ML workflows [11]. 

 

Figure 1. Key differences between ML and DL were presented in their flows and 

architecture before their final output. 

In contrast, Deep Learning (DL) automates the feature extraction process, allowing models 

to learn directly from raw, unstructured data without the requirement for manual feature design 

(see Figure 1). This is accomplished through deep architectures that utilize layers such as 

Convolutional and Pooling layers to identify patterns automatically. The automatic nature of 

feature learning in DL enables it to excel in complex tasks, such as image and audio processing, 

where manual feature extraction would be impractical [12]. Thus, the fundamental distinction 

between ML and DL lies in their approach to feature handling, with ML depending on human 

expertise and DL leveraging automated learning processes. Figure 2 shows the visualization of 

machine learning and deep learning model architecture. Each model has its own structure for 

producing the output. For example, the architecture of CNN and RNN displays more layers 
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before reaching the output layer than SVM and Decision Tree. Here, it is evident that deep 

learning models are more complex than machine learning models. 

 

Machine Learning Models Deep Learning Models 

 

 

(a) SVM (b) CNN 

  

(c) Decision Tree (d) RNN 

Figure 2 Examples of architecture diagrams of ML and DL models. 

In addition, Figure 3 shows a step-by-step process of hand gesture recognition using the 

MediaPipe framework, which relies on CNN for accurate detection and classification [13]. The 

process begins with a video stream input, where each frame is analyzed for the presence of a 

hand. The model accurately locates the hand by extracting features like edges and contours. 

Subsequently, pooling layers are employed to decrease the dimensionality of the data while 

retaining information. 

As a result, ML models are typically shallow and involve simpler algorithms. In contrast, 

DL models rely on multiple layers (deep architectures) to process and classify the data, making 

them better suited for more complex tasks. 

2.1.2. Gesture Recognition Algorithm in Existing Products 

Accurate and real-time gesture detection is essential for hand rehabilitation systems. 

MediaPipe’s pre-trained deep learning model currently serves as the backbone of the RIOT 

system, detecting and analyzing hand gestures in real-time. However, AI-based algorithms, 

such as LDA (Linear Discriminant Analysis), SVM, CNN, and LSTM, are often employed to 

recognize dynamic hand gestures. Researchers have developed systems that combine these 

techniques to achieve high accuracy in recognizing hand movements. For example, a researcher 

at Qingdao University of Science and Technology [15]. The LDA approach was used to create 

a wrist rehabilitation robot that recognizes five different types of movements with an accuracy 

rate of over 90% [20]. Other successful researchers from Nanchang University's SVM model 

were able to identify four distinct types of hand motions with an average success rate of 99.3%. 
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Figure 3. Hand gesture recognition process using MediaPipe framework, which 

integrates CNN for effective hand detection and classification. 

By integrating CNNs and LSTMs as the future version of RIOT, the system could 

recognize more complex movements and provide real-time feedback to patients during therapy 

sessions. These studies demonstrate the effectiveness of combining different AI techniques for 

improved gesture recognition in rehabilitation. Lastly, in a study regarding combining RNN 

and LSTM algorithms, Zhang Jianxi has created a hand rehabilitation robot that recognizes 

nine movements with an average accuracy of 91.44% [16].  

2.2. Significance and Contribution of Deep Learning in the RIOT System 

Deep learning can contribute to real-time feedback in gesture recognition, especially for 

RIOT environments. Currently, in the environment, MediaPipe processes hand gesture data in 

real-time, ensuring that patients receive immediate feedback during rehabilitation exercises. 

The real-time feedback loop improves patient engagement and therapeutic outcomes during 

remote therapy sessions. It is a continuous adaptive support by DL models to eliminate the 

delays often associated with traditional rehabilitation methods, thereby creating an interactive 

environment that is necessary for effective therapy [17]. Moreover, RIOT could implement 

CNNs to process visual data in the future. At the same time, LTSMs handle sequential data, 

making these systems instantaneously recognize gestures and adapt to changing patterns in 

rehabilitation exercises. 

Besides the algorithms themselves, it is believed that reducing latency in gesture 

recognition is key to maintaining a smoother feedback process within the rehabilitation tool 

and improving the user experience. Delays may cause interruptions and adversely affect the 

session and patients’ progress. By refining advanced algorithms that learn from user 

interactions, such systems can tailor their responses according to the needs of patients and 

enable a better rehabilitation process. With the further development and refinement of DL 

architectures, including attention mechanisms and transformer models, additional gains in the 

responsiveness of the recognizing system can be expected. These advancements will enable 

more intricate interpretations of gestures, expanding the range of rehabilitation exercises that 

can be efficiently monitored and adjusted in real-time [18-19]. In short, DL's contribution to 

real-time feedback mechanisms is not only significant but also central to the future of 

rehabilitation technologies. 

2.3. Latest Development in Gesture Recognition Technology 

Gesture recognition has become immensely popular for rehabilitation based on its 

improvement in accuracy and adaptability. Traditional models, such as transformer-based 
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architecture, were replaced by more advanced models aiming to enhance gesture recognition 

performance. This includes the hybrid of CNN and LSTM for spatial and temporal dimensions 

in hand gesture study, which are essential for accurately interpreting complex gestures [14,17]. 

However, MediaPipe remains a highly practical framework for real-time gesture recognition, 

offering superior performance to older methods like Microsoft Kinect and Leap Motion. 

Recent breakthroughs within hardware technologies like edge computing and low-latency 

networks have further made it possible to deploy these improved models for real-time 

rehabilitation. For example, technological advances such as these have allowed gesture 

recognition systems to perform seamlessly with no interruptions in remote environments and 

provide immediate feedback, thereby supporting users [21]In this feature, AI in gesture 

recognition not only enhances the accuracy of the systems but also makes them adaptable to 

the various needs of different patients under rehabilitation. Given AI-driven gesture recognition 

systems' ability to respond dynamically to patient progress, this feature will become one of the 

most important ways of creating personalized rehabilitation. As AI-driven rehabilitation tools 

evolve, MediaPipe’s integration with more advanced models could improve system 

adaptability, providing patients with real-time feedback tailored to their needs. 

Furthermore, the research was carried out to develop new AI architectures and learning 

paradigms that continue pushing gesture recognition's limits beyond what was previously 

possible. For instance, exploring multi-modal data input, such as the combination of visual and 

inertial sensor data, provides perspectives for developing more robust recognition systems 

capable of functioning in diverse environments. This ongoing research and development in AI 

signals bright prospects for gesture recognition technologies, particularly in the enhancement 

of rehabilitation practices [22]. 

2.4. AI-Driven Smart Healthcare System 

RIOT system represents a significant advancement in smart healthcare. By imposing AI-

driven gesture recognition, healthcare providers can achieve continuous monitoring and 

develop adaptive rehabilitation tools that are both efficient and accessible [21]. This 

connectivity allows therapists to track patient progress remotely, monitor therapy exercises in 

real time, and ensure adherence to therapeutic guidelines, thus enhancing the overall 

effectiveness of rehabilitation programs [17].  

Additionally, the system incorporates edge computing to reduce latency and ensure smooth 

therapy sessions. This low-latency system allows for seamless interaction between the patient 

and the rehabilitation tool, eliminating delays that could negatively impact patient progress. 

Advanced adaptive sensitivity algorithms could further enhance the system’s ability to 

recognize gestures in varying environmental conditions to make it more robust.  

Here, the data collected through RIOT systems can be collected to be recorded for 

healthcare providers’ rehabilitation scoring assessment on the patient's progress, which 

improves patient outcomes but also facilitates a more proactive approach to rehabilitation, 

where guidance can be made based on provided instructions for an immediate patient response 

[23]. 

2.5. Evaluation Metrics and Latency Measurement 

Metrics such as accuracy, precision, recall, F1-score, and latency were used to calculate 

the implementation of the hand gesture recognition system developed in RIOT. During the 

simulated rehabilitation sessions, the effectiveness of identifying gestures and providing real-

time feedback was investigated. 
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 First, accuracy was measured of how well the system correctly recognizes gestures [24] 

and was calculated in Eq. (1). Where TP (True Positive) and FP (False Positives) are 

represented as correctly detected gestures, incorrectly detected gestures, and missed gestures, 

respectively. Meanwhile, Precision Eq. (2) measures the proportion of correctly identified 

gestures out of all detected gestures to understand the accuracy of the system in prediction [25]. 

Moreover, Recall Eq. (3), which is also known as sensitivity, identifies true gestures out of all 

possible gestures [26]. Next, the balance between precision and recall was defined in Eq. (4) 

as the harmonic mean of the two metrics that can spot uneven class distribution during 

evaluation. 

 Besides the metrics mentioned above, latency is also an essential factor in real-time 

gesture recognition systems, particularly in rehabilitation contexts where immediate feedback 

is essential for the user [27]. Latency is measured in milliseconds (ms) and can be defined in 

two ways depending on the application, and Eq. (5) displays the time taken by the system to 

provide feedback and gesture inputs. Subsequently, in the experiment, the console window of 

the RIOT website inspection browser was used to retrieve timestamps and perform latency 

calculations [28] for every test, as displayed in Figure 4. 

 

Figure 4. The real-time time taken was displayed in a table from the console window 

as outputs to calculate the gesture's latency. 

In this experiment, latency was examined as one of the factors measuring the delay 

between executed gestures and gesture detection time. As illustrated below, Eq. (1), Eq. (2), 

Eq. (3), Eq. (4), and Eq. (5) represent the formulas for the measurements. 

 Accuracy =
TP

TP+FP+FN
 (1) 

 Precision =
TP

TP+FP
 (2) 

 Recall (or Sensitivity)  =
TP

TP+FN
 (3) 

 F1Score = 2 ×
Precision×Recall

Precision+Recall
 (4) 

 Latency (ms) = Response Time − Input Time (5) 

 Latency (ms) = Gesture Detected Time − Gesture Performed Time (6) 

All these equations were implemented to observe the Design-of-Experiment factors' 

outcomes, which will be discussed in the next section. 
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3. METHODOLOGY 

The methodology for this investigation focuses on integrating MediaPipe, Web Assembly, 

and Deep Learning technologies to achieve real-time hand gesture recognition in the RIOT 

system. This chapter elaborates on the theoretical and practical implementation of these 

technologies, including the post-calibration process and experimental design factors that affect 

system accuracy. 

3.1. System Design Overview 

The RIOT system utilizes MediaPipe, a real-time framework for hand landmark detection 

and deep learning models to facilitate hand gesture recognition for rehabilitation. The system’s 

design incorporates WASM for web-based operation, enabling lightweight execution of 

complex models without requiring significant computational resources from the client side. 

MediaPipe captures real-time hand gestures through a camera device, such as a webcam, 

and detects 21 key points. MediaPipe Hands uses pre-trained machine learning models, likely 

developed using deep learning techniques. However, the MediaPipe framework itself does not 

require external deep learning frameworks such as TensorFlow or PyTorch during its 

deployment, as its models are pre-optimized for real-time performance [9]. 

The website's interactivity was created for two types of users: the patient's guardian or the 

patient themselves and the administrators. Both users were required to sign up and log in before 

gaining full access to RIOT features. Since product was successfully built, the next step of the 

research is optimizing and tuning the system to ensure the optimal conditions for the exercises 

included in RIOT. 

3.2. Calibration of Hand Gesture Recognition 

Calibration is crucial to ensure precise hand gesture recognition in the RIOT system. The 

following section outlines the calibration process and the post-calibration adjustments. 

 

Figure 5. The RIOT system utilizes MediaPipe and WASM with IoT devices to 

detect and recognize exercise gestures in real time while efficiently managing data. 
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Figure 5. Flowchart of the post-calibration research displaying the process of testing 

the RIOT website. 

Figure 5 reveals the flow of the calibration process, where the user’s gestures are captured 

at various hand positions and distances at the setup, followed by factor adjustments to ensure 

accurate tracking. The study was repeated three times to ensure thorough analysis. The process 

began with setting up environmental factors, followed by adjusting camera variables for 

testing. 

3.2.1. Post-Calibration Adjustment 

The initial calibration (pre-calibration) phase was focusing on setting up the system to 

ensure precise hand gesture recognition. This involves utilizing a Design of Experiment (DoE) 

methodology to test and optimize various factors like camera type, distance, and lighting 

conditions. Pre-calibration ensures that the gesture recognition system functions reliably, 

laying the groundwork for more precise rehabilitation assessments in stroke patients, as 

conducted in prior research [7]. The current focus is on post-calibration adjustments, which 

ensure that the system maintains high accuracy during real-time rehabilitation sessions. These 

adjustments involve compensating for varying environmental conditions, such as lighting, hand 

position, and distance from the camera. 

The adaptive sensitivity algorithms implemented in the post-calibration phase dynamically 

adjust the system's recognition thresholds in response to changes in the user's environment. For 

example, if the user moves farther from the camera or if the lighting conditions change, the 

system recalibrates its detection sensitivity to maintain consistent accuracy. This ensures that 

the hand gestures are recognized effectively throughout the rehabilitation session. 

The system setup for the calibration process involves laptop webcams. Meanwhile, post-

calibration, an external webcam, and a mobile phone camera were experimented with, and the 

laptop ran the RIOT software. The specified distance to position the hand is 20.00 cm to 70.00 

cm away from the camera because this range ensures optimal focus and clarity of the hand 

movements, which is accurate for gesture recognition [29]. When movements are precisely 

tracked in rehabilitation settings, the feedback can significantly enhance patient performance 
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and confidence. Also, by emphasizing that real-time feedback during exercises can simulate 

the presence of a physical therapist, thereby improving adherence and outcomes. 

This distance is a primary factor that influences the accuracy of gesture recognition when 

the camera captures hand movements, and the system processes this data to provide real-time 

feedback during rehabilitation exercises. 

3.3. Design of Experiment (DoE) Factors for Post-Calibration 

Following the initial calibration process described in the previous study, this paper focuses 

on post-calibration adjustments to enhance the hand gesture recognition system across various 

devices, including external webcam and mobile phone cameras. These adjustments are 

necessary to maintain accuracy in real-world environments where lighting, camera angles, and 

distances vary significantly. 

To ensure the system's robustness, a Design of Experiments (DoE) methodology was 

implemented to systematically evaluate and optimize the performance of the gesture 

recognition system. The following factors were analyzed in Table 1. Data was collected from 

both external webcams and mobile phone cameras under the mentioned conditions.  

Table 1. DoE Factors affecting the accuracy of hand gesture recognition during data 

collection and analysis. 

Factor Levels/SI Unit  Objectives  

Distance 
5.0 cm increment from 20.00 cm to  

70.00 cm. 

To determine the optimal distance at which 

the camera accurately captures hand gestures. 

This factor was tested by placing the hand at 

different distances from the webcam and 

observing the system's recognition accuracy. 

Types of 

Cameras 

• External webcam. 

• Smartphone front camera. 

To compare gesture recognition performance 

between a mobile phone camera and an 

external webcam. 

Lighting 

conditions  

Indoor under artificial light settings: 

• Dim. 

• Bright. 

To assess how different ambient lighting 

conditions impact the accuracy of hand 

gesture detection. 

Latency Milliseconds (ms). 

To measure the time delay (latency) between 

when a hand gesture is made and when the 

system recognizes it. This helps determine 

system responsiveness. 

 

The DoE framework determined the optimal setup for each device type. The results were 

analyzed to identify the most reliable combinations of camera type, distance, lighting, and hand 

positioning for both mobile and desktop environments. During this stage, JavaScript was used 

to conduct part of the investigation, as shown in Figure 7. 
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Figure 6. The snippet source code for retrieving the time taken for the gesture actions 

for latency data from live simulated rehabilitation sessions was written in the console 

window to perform the calculation. 

3.3.1. Potential for Future Deep Learning Integration 

Future iterations of the RIOT system will explore the integration of CNNs and RNNs 

(LSTMs) to improve gesture recognition and enhance the rehabilitation experience. CNNs can 

provide more refined spatial analysis of hand gestures, while LSTMs can manage dynamic 

movement sequences, offering users more personalized and accurate feedback. 

4. RESULTS AND DISCUSSION 

This section evaluates the RIOT system, highlighting its performance across different test 

environments. This chapter is structured to cover the experimental setup, performance 

benchmarking results, and comparison with existing systems. 

4.1. Experimental Setup 

The experimental setup was designed to evaluate the performance of the RIOT system 

under various environmental conditions and with different camera types, including external 

webcams and mobile phone cameras. The system was tested with hands positioned between 

20.0 cm and 70.0 cm from the camera, as shown in Figs 8(a) and 8(b), to simulate real-world 

rehabilitation exercises. Key variables such as lighting conditions (dim and bright) and camera 

type were systematically controlled to ensure a comprehensive performance evaluation. 
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Figure 7. Setup for post-calibration was organized according to the discussed DoE 

elements. 

All experiments were conducted in a controlled environment, ensuring consistency in 

lighting and camera placement. For example, the brightness of the light bulb and the distance 

are labeled every 5.0 cm increment gap. Finally, MediaPipe processed these data and integrated 

them into the RIOT system for gesture recognition. Then, the output of the experiments was 

analyzed for further assessment. 

4.2. Results of Post-Calibration Adjustments 

The results are categorized based on key factors that affect the system's performance. 

These factors include distance, camera type, and lighting conditions, which were systematically 

tested to assess the system's accuracy, precision, recall, F1 score, and latency. Table 2, Table 

3, Table 4, and Table 5 were demonstrated as the brief findings of the experiment based on 

DoE factors. 

4.2.1. Performance by Distance 

The distance between the camera and the subject's hand significantly impacted the system's 

accuracy and latency. As the distance increased from 20 cm to 70 cm, there was a noticeable 

improvement in accuracy, precision, and F1 score. However, latency also increased at these 

distances, reflecting longer processing times. However, the trade-off is acceptable considering 

the significant gains in accuracy and F1 score. At 20 cm, the accuracy was 0.40, but at 60.00 

cm, the accuracy increased to 0.97. The F1-score also increased from 0.43 at 20.00 cm to 1.00 

at 60.00 cm, indicating an improved balance between precision and recall at greater distances. 

This trend aligns with the findings of a demonstration of gesture recognition accuracy 

improving with distance by achieving an average accuracy of 96.64% in their optimized model 

to reduce interference from background noise. Table 2 indicates results showing that the system 

performs optimally at 50.00 to 60.00 cm, where accuracy and F1-score reach their highest 

levels despite the increase in latency. 

Similarly, the importance of distance in their real-time gesture recognition system is also 

noted in improved performance metrics at greater distances. The increase in latency with 

distance, while a drawback, is acceptable due to the significant gains in accuracy and F1 score, 

resulting in the notion that distance is a crucial factor in gesture recognition systems. 
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Table 2. Comparison of all evaluation metrics and latency for gesture recognition by 

distances between the camera and patients’ hand. 

Distance 

(cm) 

Mean Accuracy 

(%) 

Mean Precision 

(%) 

Mean Recall 

(%) 

Mean F1-score 

(%) 

Mean Latency 

(ms) 

 Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

20.0 0.40 0.32 0.33 0.47 1.14 0.58 0.43 0.37 0.54 0.42 

25.0 0.44 0.37 0.67 0.36 1.74 1.21 0.51 0.45 0.61 0.50 

30.0 0.50 0.36 0.58 0.24 0.93 0.35 0.57 0.42 0.64 0.41 

35.0 0.53 0.37 0.58 0.30 1.14 0.63 0.60 0.41 0.68 0.44 

40.0 0.59 0.32 0.63 0.42 1.59 1.36 0.65 0.38 0.74 0.40 

45.0 0.75 0.30 0.46 0.40 1.98 1.39 0.80 0.32 0.91 0.36 

50.0 0.82 0.19 0.71 0.21 1.69 1.06 0.93 0.18 1.01 0.18 

55.0 0.86 0.13 0.63 0.28 2.03 1.35 0.98 0.03 1.05 0.08 

60.0 0.97 0.03 0.67 0.36 1.34 1.06 1.00 0.00 1.02 0.10 

65.0 0.89 0.10 0.50 0.44 1.99 1.25 1.00 0.01 1.08 0.12 

70.0 0.89 0.10 0.54 0.50 1.27 0.43 0.98 0.07 1.03 0.07 

 

 
Figure 8. Various distances were determined in relation to the structure of the 

environmental factors of the post-calibration period. The bar chart effectively 

summarizes the findings across the metrics. 

 

Accuracy and F1-score improved significantly at distances between 50.00 cm and 60.00 

cm, where the system achieved the highest level of gesture recognition accuracy. The accuracy 

at this range is attributed to the effective capture of hand features and gestures, which 

diminishes at greater distances due to increased latency and reduced resolution.  

Several scientific factors support the optimal distance of 60.00 cm for hand gesture 

recognition systems. At this distance, the system achieves high accuracy and F1-score, critical 

metrics for evaluating the performance of gesture recognition algorithms. As shown in Figure 

8, the latency increases as distance increases, but it remains within an acceptable range, making 

the system responsive and practical for real-time hand gesture recognition. This is particularly 

true in the context of image recognition. As the distance increases, larger images must be 

processed, which can lead to increased computational demands and longer processing times. 
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4.2.2. Performance by Camera Types 

An external webcam and a mobile phone camera have performed some tests on gesture 

recognition for both exercises to assess their impact on accuracy and latency. Table 3 shows 

that both cameras were tested and exhibited certain patterns. The comparative analysis of 

camera types reveals that while the mobile phone camera provides slightly better accuracy 

(0.70) compared to the external camera (0.68), the external camera outperforms in terms of 

precision, recall, and F1-score and it is clear that precision and low latency are dominant, 

according to Figure 9. 

Table 3. Evaluation metrics and latency are based on the types of cameras used to 

capture hand gestures for both stroke rehabilitation exercises. 

Camera 

Type 

Mean Accuracy 

(%) 

Mean Precision 

(%) 

Mean Recall 

(%) 

Mean F1-score 

(%) 

Mean Latency 

(ms) 

 
Average 

Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

External 

camera 
0.68 0.31 0.47 0.35 1.59 1.08 0.79 0.35 0.85 0.36 

Mobile 

phone 

camera 

0.70 0.33 0.67 0.36 1.47 1.02 0.75 0.35 0.84 0.36 

 

 

Figure 9. External camera and Mobile Phone Camera front camera present slight 

differences during the evaluation 

These results specify that while the mobile phone camera provides marginally better 

accuracy, the external camera offers faster processing with higher precision, making it more 

efficient in real-time rehabilitation scenarios. 

The system must respond promptly and prevent false positives, making it evident that an 

external camera is more suitable for this application. The findings align with research on the 

importance of camera quality in gesture recognition systems, highlighting that superior 

cameras result in improved recognition rates. Therefore, although both camera types are 

effective, the external camera's enhanced precision and reduced latency make it better suited 

for real-time rehabilitation scenarios. 
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4.2.3. Performance by Lighting Conditions 

The lighting conditions during the experiment played a role in determining the system’s 

performance. Investigations were conducted under both bright and dim lighting to evaluate 

how ambient light affects accuracy, precision, and latency, as shown in Table 4. 

Table 4. The simplified version of average mean percentages of metrics under lighting 

settings. 

Lighting 

Condition 

Mean Accuracy 

(%) 

Mean Precision 

(%) 

Mean Recall 

(%) 

Mean F1-score 

(%) 

Mean Latency 

(ms) 

 
Average 

Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Bright 0.72 0.30 1.84 1.20 0.81 0.33 0.91 0.35 0.67 0.38 

Dim 0.67 0.34 1.23 0.77 0.73 0.37 0.78 0.37 0.47 0.32 

Referring to Figure 10, the system performed much better in bright lighting, with an 

accuracy of 0.72 and a precision of 1.84, compared to dim lighting, where accuracy dropped to 

0.67 and a precision of 1.23. While dim lighting provided a slight speed advantage with lower 

latency (0.47 ms vs. 0.67 ms), this was not enough to compensate for the lower performance. 

Therefore, bright lighting is better for more accurate and precise gesture recognition. In 

addition to lighting, other factors, such as reinforcing what has already been found in other 

research, highlight how important it is to fine-tune these conditions for better real-world 

performance [30]. 

 

Figure 10. The chart illustrates the impact of bright and dim lighting conditions on 

the system. 

4.2.4. Outline of Post-Calibration Outcomes 

Post-calibration adjustments were necessary to optimize the hand gesture recognition 

system within the RIOT framework. The calibration process focused on refining the system’s 

accuracy, precision, recall, F1-score, and latency across varying distances, camera types, and 

lighting conditions. In this segment, Figure 11 and Table 5 provide insights into the post-

calibration effects. The results showed that distance and camera accuracies averaged 0.69, with 
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precision at 1.53. However, recall and F1-score were lower with distance, and latency increased 

to 1.62 ms, reflecting longer processing times. 

Table 5. The finalized average means of factors and their evaluations in hand gesture 

recognition through the RIOT website. 

Factors 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Latency 

(ms) 

Distances 0.69 1.53 0.59 0.36 1.62 

Camera 0.69 1.53 0.77 0.85 0.57 

Lighting 0.70 1.54 0.77 0.85 0.57 

 

 

Figure 11. The grouped bar chart concluded the system's execution across three 

factors—distance, camera type, and lighting—evaluating metrics such as accuracy, 

precision, recall, F1-score, and latency. 

Briefly, the optimal distance is 60.00 cm; the preference for external cameras due to their 

precision where it can avoid false positives, lower latency from the external camera, and the 

necessity of bright lighting conditions collectively enhance the system's reliability and 

effectiveness in real-world rehabilitation applications. These findings align with existing 

literature, confirming the validity of the post-calibration adjustments made to the system. 

5. CONCLUSION 

In conclusion, the RIOT system presents an innovative real-time, remote rehabilitation 

solution using pre-trained deep learning models like MediaPipe, recognizing CNNs and 

LSTMs to accurately detect hand gestures that can be considered for RIOT improvement in the 

future. Consequently, post-calibration adjustments have enhanced its performance across 

various conditions, making it suitable for at-home therapy. However, the system's effectiveness 

in real-world scenarios remains to be validated through clinical trials. Future work will focus 

on integrating adaptive learning and wearable technology and conducting broader testing to 

fully realize the system's potential in improving patient outcomes. As research advances in this 

369



IIUM Engineering Journal, Vol. 26, No. 1, 2025 Mohd Dhuzuki et al. 
https://doi.org/10.31436/iiumej.v26i1.3455 

 

 

area, the potential for hand gesture recognition to transform rehabilitation practices and 

improve patient outcomes is immense. An edge computing approach can also impact 

healthcare, the environment, and scientific involvement in the computing world. 
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